

HORIZON-EUSPA-2026-SPACE-02-52 – System end users and first responders in emergency management sought for Emergency Geospatial Platform

Summary

Profile type	Company's country	POD reference
Research & Development Request	Spain	RDRES20260127017
Profile status	Type of partnership	Targeted countries
PUBLISHED	Research and development cooperation agreement	• World
Contact Person	Term of validity	Last update
Enrico FRANZIN	27 Jan 2026 27 Jan 2027	27 Jan 2026

General Information

Short summary

Spanish SME specialised in advanced satellite connectivity solutions and management platforms for critical operational environments is building a proposal to develop an Emergency and Crisis Management Geospatial Platform integrating space data, AI-based predictive analytics, resilient SATCOM communications and Augmented&Virtual Reality interfaces into a single platform. Technology validators and operational users are sought. Call: HORIZON-EUSPA-2026-SPACE-02-52. Deadline: 24/02/2026

Full description

The aim of the Project Proposal is the development, integration and demonstration of an Emergency Geospatial Platform aimed at improving the prevention, anticipation and operational management of critical situations, as well as post-event assessment, analysis and mitigation, with a particular focus on wildfires and environmental risks, while maintaining a clearly cross-sectoral approach.

Currently, emergency management relies largely on reactive models, activated once an event has already occurred. This approach limits anticipatory capacity and forces critical decisions to be taken with incomplete or delayed information. The project addresses this challenge by introducing a paradigm shift towards prevention, based on the availability of useful information in (near) real time, combining space technologies, advanced analytics and artificial intelligence.

The solution integrates and fuses data from Earth Observation (Copernicus), meteorology, terrain and operational sources, transforming them into actionable information for decision-making. On this basis, AI-based spatio-temporal predictive models are developed to estimate ignition probability, event evolution and severity, enabling scenario anticipation and optimisation of resource deployment before an emergency materialises.

The project incorporates a resilient SATCOM-based communications architecture, ensuring service continuity even when terrestrial infrastructures are degraded or unavailable. In addition, the platform includes embarkable capabilities on UAVs and High-Altitude Platform Systems (HAPS), enabling persistent observation, edge computing and communication relay functions in remote or highly critical areas.

Interaction with end users is supported through collaborative web interfaces and Augmented Reality (AR) and Virtual Reality (VR) technologies, which enhance first responders' situational awareness, facilitate multi-agency coordination, and enable advanced simulations for demonstration, training and operational preparedness.

The project will be developed to reach TRL 9, through large-scale demonstrations in real operational environments, with the direct participation of first responders (fire services, civil protection and emergency services), who will validate the technology from a functional, operational and impact perspective.

The Emergency Geospatial Platform is designed with a cross-sectoral and cyber-resilient approach, allowing its reuse across domains such as emergency management, security, environmental protection and critical infrastructures. The project contributes to increasing the uptake of data and services from the European Space Programme (Galileo, EGNOS, Copernicus).

Call: HORIZON-EUSPA-2026-SPACE-02-52

Call Deadline: 24 February 2026 at 17:00 CET.

Type of Action: Innovation Actions (IA).

Indicative Budget: Expected contributions range between EUR 1.5 and 1.8 million per project

Type and role of the partner: Entities acting as first responders in Crisis and Emergency Management. Role: to validate the technologies in real operational environments; firefighters, civil protection, etc

Advantages and innovations

The Emergency Geospatial Platform introduces a paradigm shift in emergency management by moving the focus from reactive response to prevention, anticipation and operational preparedness, enabled by advanced space and digital technologies.

Its main advantage lies in the integration and fusion of heterogeneous geospatial data in (near) real time, including Earth observation, meteorological, terrain and operational sources, transforming them into actionable information for decision-making. This approach overcomes the fragmentation of existing systems and provides a shared and continuously updated situational awareness.

From an innovation perspective, the platform incorporates advanced AI-based predictive models to estimate ignition probability, event evolution and severity. This enables early risk identification, scenario anticipation and optimised

resource allocation before emergencies materialise, going beyond descriptive or post-event solutions.

A key differentiator is its resilient SATCOM-based communications architecture, ensuring service continuity and access to critical information even when terrestrial infrastructures are degraded or unavailable, thus reinforcing operational resilience in extreme conditions.

The platform also integrates embarkable capabilities on UAVs and High-Altitude Platform Systems (HAPS), allowing the deployment of sensors, processing nodes and communications directly in the operational environment. This extends coverage, improves persistence and enables communication relay, edge computing and advanced monitoring in inaccessible or high-risk areas.

Additionally, the platform features collaborative web-based visualisation and AR/VR technologies, enhancing situational awareness for first responders, supporting multi-agency coordination and enabling data-driven simulations and training.

Finally, the Emergency Geospatial Platform follows a cross-sectoral and cyber-resilient design, ensuring alignment with European requirements on security.

Technical specification or expertise sought

The partners sought will act as system end users and first responders in emergency management, providing a real operational perspective and validating the solution under actual conditions of use.

Their role within the project will include the following key functions:

- Definition of operational requirements: contributing expert knowledge of real emergency response procedures, identifying operational needs, constraints and priorities from a field perspective.
- Functional co-design: working with the technical team to validate workflows, interfaces and functionalities, ensuring alignment with real intervention and coordination processes.
- Validation in operational environments: participating in field trials, exercises and demonstrations to assess system performance in realistic emergency scenarios.
- Usability and operational value assessment: evaluating ease of use, relevance of the information provided, improvement of situational awareness and support to decision-making under pressure.
- Impact assessment: contributing to the evaluation of benefits such as reduced decision-making time, improved multi-agency coordination and more efficient resource deployment.
- Support to adoption and exploitation: providing recommendations for integration into existing procedures and for future scaling and adoption by other operational entities.

Overall, the partners will play a key role as technology validators and operational reference users, ensuring that the developed solution is effective, usable and aligned with the real needs of emergency management operations.

Stage of development

Sustainable Development goals

- **Goal 3: Good Health and Well-being**
- **Goal 14: Life Below Water**
- **Goal 10: Reduced Inequality**
- **Goal 15: Life on Land**
- **Goal 9: Industry, Innovation and Infrastructure**
- **Goal 1: No Poverty**
- **Goal 16: Peace and Justice Strong Institutions**

- **Goal 17: Partnerships to achieve the Goal**
- **Goal 13: Climate Action**
- **Goal 2: Zero Hunger**

IPR Status

IPR Notes

Partner Sought

Expected role of the partner

The partners sought will act as system end users and first responders in emergency management, providing a real operational perspective and validating the solution under actual conditions of use.

Their role within the project will include, in a structured manner, the following functions:

- Definition of operational requirements: providing expert knowledge of real emergency response procedures, identifying needs, constraints and priorities from a field perspective.
- Functional co-design: collaborating with the technical team to validate operational workflows, interfaces and functionalities, ensuring that the platform aligns with real intervention and coordination processes.
- Validation in real operational environments: participating in field trials, exercises and large-scale demonstrations, assessing system performance in realistic emergency scenarios.
- Usability and operational value assessment: evaluating the practical usefulness of the information provided, ease of use, improvements in situational awareness and support for decision-making under pressure.
- Impact verification: contributing to the measurement of impact in terms of reduced decision-making time, improved multi-agency coordination and optimised resource deployment.
- Support to future adoption and exploitation: providing recommendations for integration into existing procedures and for scaling up and adoption by other operational entities.

Overall, the partners will play a key role as technology validators and operational reference users, ensuring that the developed solution is not only technically sound, but also effective, usable and aligned with the real needs of emergency management.

Type of partnership

Research and development cooperation agreement

Type and size of the partner

- **SME 11-49**
- **SME 50 - 249**
- **Big company**
- **R&D Institution**

Call Details

Framework program

Horizon Europe

Call title and identifier

HORIZON-EUSPA-2026-SPACE-02-52 – Innovative space-based applications enhancing capabilities for a resilient Europe

Submission and evaluation scheme

Single-stage submission

Anticipated project budget

EUR 1.5–1.8 million

Coordinator required

No

Deadline for EoI

15 Feb 2026

Deadline of the call

24 Feb 2026

Project duration in weeks

104

Web link to the call

<https://ec.europa.eu/info/funding-tenders>

Project title and acronym

Emergency Geospatial Platform for Crisis Management (EGP-CRISIS)

Dissemination

Technology keywords

• 01000000 - **Satellite**

Technology/Positioning/Communication in GDS

- 01003003 - Artificial Intelligence (AI)
- 01006013 - Communications Protocols, Interoperability
- 01004007 - GIS Geographical Information Systems
- 01005006 - Visualisation, Virtual Reality

Targeted countries

- World

Market keywords

- 01006004 - Communications services
- 01004001 - Local area networks
- 01004008 - Other data communications
- 01005001 - Satellite services/carriers/operators

Sector groups involved

- Aerospace and Defence
- Mobility - Transport - Automotive